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EFFECT OF VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY ON HIGH-SPEED SLIP FLOW
_BETWEEN CONCENTRIC CYLINDERS!®

By T. C. Lm¥ and R. E. STREET

SUMMARY

Schamberg was the first to solve the differential equations of
slip flow, including the Burnelf terms, for conceniric circular
cylinders assuming constant coeflicienis of viscosity and thermal
conductivity. The problem 18 solved for variable coefficients of
viscosity and thermal conductivity in this paper by applying a
transformation which leads to an ieration method. Starting
with the solution for constant coefficients, this method enables
one to approximate the solution for variable coefficients very
closely after one or two steps. Satisfactory results are shown
o follow from Schamberg’s solution by using his values of the
constant coefficients multiplied by a constant faclor v, leading
to what are denoted as the effective coefficients of viscosily and
thermal conductivity.

INTRODUCTION

The fact that a gas is not a continuum but actually a
collection of molecules in rapid but random motion has
begun to have more and more importance in the aero-
dynamics of high-speed flow. 'This is due to the expectation
that flow through wind tunnels at low pressure or flight at
extremely high altitudes will not be amenable to analysis
using classical fluid dynamics. When the mean free path
of the molecules [ is negligible compared with the macro-
scopic dimension L, which may be wing chord, tunnel
diameter, and so forth, the classical picture should hold as
the molecules are so tightly packed together the gas behaves
just like a2 mathematical continuum. The ratio I/L is
defined as the Knudsen number Kn, which is a measure of
the degree of gas rarefaction. In terms of the better known
parameters Reynolds number Ie and Mach number M, the
Knudsen number is proportional to M/Re. Hence, although
not & new parameter, it is & convenient one to use when the
degree of rarefaction of the gas is of interest.

Gas dynamics is the continuous-flow regime or Clausius
gas regime for which the Navier-Stokes equations together
with the condition of no slip on the boundaries are valid
and the Knudsen number is extremely small. If the gas
becomes more rarefied and the Knudsen number increases,
the effect of slip along the boundaries becomes noticeable,
although the Navier-Stokes equations remain valid so long
as the Mach number remains small. This phenomenon has
been known for over 75 years and has been the subject of
an extensive study by physicists. Tsien (ref. 1) has sum-
marized this work very well. During this same period of

time the solution of Boltzmann’s integral equation by Enskog
and Chapman, along lines laid down by Hilbert, has led to
the distribution function for a nonuniform gas as an expan-
sion in powers of the Knudsen number. This approach
yields the equations of flow in successive orders of approxi-
mation, the first order being the Navier-Stokes equations,
the second order, the Burnett equations, and so forth. The
third-order approximation has never been carried out and
the expected complexity of the result does not seem to make
the attempt worth while, especially as the restrictions on the
properties of the gas itself are not strictly valid. Chapman
and Cowling (ref. 2) have presented this theory in their
well-known treatise.

Tsien (ref. 1) presented the Burnett equations of motion
and pointed out that unless the product Mach number times
Knudsen pumber (M Kn) was significant any problem in
flow could be theoretically solved using the Navier-Stokes
equations. The question of the proper boundary conditions
when the higher order Burnett terms are included was
raised by Tsien but not answered until 2 years later when
Schamberg, one of Tsien’s students, showed in his doctor’s
thesis (ref. 3) that the number of boundary conditions
required for the Burnett equations is the same as for the
Navier-Stokes equations.? While being the same in num-
ber, the Schamberg boundary conditions are considerably
more complex, being also expansions in powers of the
Knudsen number. The first approximations for the slip
velocity and temperature jump remain essentially the same
as those used by the physicists in their treatment of low-
speed slip flows (ref. 4, ch. 8). The second approximation
which is required when used in conjunction with the Burnett
equations for high-speed flows is new and, like the Burnett
terms, of considerable complexity.

The Burnett equations and the Schamberg boundary
conditions apply to the domain of high-speed slip flow that
the aerodynamicist expects to enter first when he leaves the
domain of classical gas dynamics. Their great complexity
discourages expectation of a theoretical solution of any
practically important problem. Hence, the solution of any
problem, even trivial so far as flows go, is difficult; but, if
the problem can be set up experimentally, the attempt
would seem worth while in order to determine the validity
of the expansions in powers of Knudsen number and a pos-
sible delineation of the dividing line between gas dynamics
and slip flow.

! Bupersedes NAOCA TN 2395, “Effect of Varlable Viscosity and Thermal Oonduotivity on High-Speed Slip Flow Betwesn Ooncentrio Oylinders” by T. O. Lin and R. E. Streot, 1953,
3 The correctness of Schamberg’s boundary conditions is not unfversally acoepted, but they are the only cnes proposed so far.
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Experimental results have now been obtained for flow
past spheres (ref. 5) and transverse flow past circular cylin-
ders (ref. 6) both of which are almost insurmountable
theoretical problems. Schamberg (ref. 3) solved the plane
Couette flow problem and the problem of the simple rotation
between two coaxial cylinders. In order to linearize his
equations he assumed that the coefficient of viscosity and
the coefficient of heat conduction of the gas were absolute
constants. Lin (ref. 7) removed the restriction of constant
values of these coefficients and recalculated the plane Couette
flow for a perfect gas with constant specific heats and con-
stant Prandtl number but with the coefficients of viscosity
and heat conduction varying as a constant power of the
absolute temperature. The present investigation does the
same for the flow between coaxial cylinders. In contrast
with the plane Couette flow problem the flow between two
coaxial cylinders rotating relative to each other seems of
more than academic interest, since an experimental check
is quite possible and no doubt will be performed in the near
future.

The problem is set up in its general form assuming only
that the Burnett equations and Schamberg boundary condi-
tions are valid and the flow is steady and stable. Thus the
streamlines are circles and only the flow in a single plane
normal to the cylindric axis need be considered. Whether
such a flow can be stable at high rotary speeds is outside the
domain of the method used here. A consideration of the
stability criteria based upon the Navier-Stokes equations
with slip at the boundary is to be found in reference 8.
While special laws of dependence of the gas properties are
assumed, the method is theoretically possible for other laws
as well as for variable specific heats and Prandtl number.

This investigation was carried out at the University of
Washington under the sponsorship and with the financial
assistance of the National Advisory Committee for Aero-
nautics.

FUNDAMENTAL EQUATIONS AND EXPRESSIONS FOR
STRESS TENSOR AND HEAT-FLUX VECTOR

It is convenient to start from the general equations of the
mean motion of & fluid all of whose physical properties vary;
in Cartesian tensor notation these equations are (ref. 2, 7,
or 9):

The continuity equation:

Dot oS W

The momentum equation:

Dui—‘ PF t+ bPu

P @)
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The energy equa.tion:
1 b{li
P 7 Dt +P [ vy b&) + (3)

where p and E are, respectively, the density and the internal
energy per unit mass; z; is the Cartesian coordinate in the
physical space; u, Iy, and ¢, are, respectively, the com-
ponents of the velocity of the fluid mean motion, the external
force per unit mass, and the heat-flux vector in the z,direc-
tion; Py, is the component of the pressure tensor; and

D_ 2,

is the comoving time derivative or time derivative following
the .motion as in hydrodynamics. (See appendix A for
definitions of all symbols.) The summation convention,
summing over repeated subscripts, is used.

These general equations can be derived directly from Max-
well’s equation of transfer by making use of the properties
of the summational invariants for molecular encounters
without determining the form of the molecular-velocity-
distribution function. The more convenient Cartesian ten-
gor notation is used rather than the vector-dyadic notation
preferred by Chapman and Cowling (ref. 2, pp. 51 and 52).

In terms of the stress tensor 7, which is defined by

Py=pdy+y (5)

(p being the hydrostatic pressure and §,, the unit tensor),
the momentum equation, equation (2), and the energy
equation, equation (3), take the following forms, respectively:

p%l; —pF rl-%—l- Ory_ (6)
2
PPty g r, Tty U 7

Upon using the continuity equation, equation (1), and the
first law of thermodynamics

dQ=aE+pd(3) ®)

together with the definitions dS=dQ/T and H=E(p/p),
Q, S, and H being the heat received, the entropy, and the

enthalpy per unit mass of the gas, respectively, it is easy to
show that
DE, ou,

DE, DS DH Dp
P Dt oz,

?T 57=r i ~ Dt )




HIGH-SPEED SLIP FLOW BETWEEN CONCENTRIC CYLINDERS

and energy equation (7) becomes

DS 2
T g7 o S (10)

* DH D 0
p =Py S+ S (1)

Adding to equation (11) the product of u; and equation
(6) and considering that 7 is & symmetrical tensor, another
form of the energy equation is obtained:

D/ 1 2
p gy (B+zua)—mF P2 ruy=0 (12)

Equations (3), (7), (10), and (11) are the most familiar
forms of the energy equation. Neglecting terms containing
the external force F; and setting H equal to ¢,T, equations
(6) and (12) yield the general momentum and energy equa-
tions given by Tsien (ref. 1) and used by Schamberg (ref. 3).
The sign of 74, being the same as that used by Tsien and
Schamberg, is opposite to the usual convention.

It is only through the expressions for the stress tensor =4
and the heat-flux vector ¢; that the above momentum and
energy equations depend on the form of the molecular-
velocity-distribution function. Let ,ry4 and ,g, denote the
rth-order approximations to the stress tensor 7, and the
heat-flux vector g,, respectively, and write

rru———nZ_:,’ Tu(') (13)
and
rfl{=’§% q:™ (14) .

where 7,4 and ¢, are the nth-order corrections to ¢ry and
ofs, respectively. Then the first-order approximation to the
molecular-velocity-distribution function, that is, the Max-
wellian distribution, gives (ref. 2, pp. 112, 122, and 123)

oTu——T(j(o) =0 (15)
of1=q:"=0 (16)

which, together with equations (6) and (7), yield the Eulerian
equation of motion

and

Du, bp___
PP —pF, + =0 (17
and the corresponding energy equation

DE bu,
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The second-order approximation to the molecular-velocity-
distribution function gives (ref. 2, pp. 112, 122, and 123)

ry=Tyy P =—2p b_:v: (19)
and
ol
191=q:P=—2X o, (20)

where p and N are the coefficients of viscosity and thermal

conductivity, r%pectlvely, and — Quy is the nondivergent sym-

>
metrical tensor associated with the tensor %—: that is,
2}
bu, 1 + 1 bu,k
Z):c, oz D:c 3 b:c

In general, any tensor 4, with a bar over it has the following
meaning (ref. 1):
Aij__ (AH_I—A.ﬂ) AH:‘S‘U (21)

Substituting equations (19) and (20) into equations (6) and
(7) yields the conventional Navier-Stokes equations

D,

o) b’u«{

bp
PF{‘I" 2 bxj B axj

and the corresponding energy equation of viscous flow

—% (x %61—:)=0 (23)

From the definition of the nondivergent symmetrical tensor,
equation (21),

DE | _ou;

bu{%
POt TP 3z,

" 3z, Bz,

i(ﬁu_t)_—_l_é Qug) 1 0 +_ < D
oz \"oz,) 20z, \"oz,) 3 om b:c, 2 3z, \F 2
and

du, du,_ du, Ouy

b:c, bﬂ:j b:l:j bx,

(b:c1 (bxa oz <bxs %1)?]+
s (G o) +(Er ) + () J=0

Making use of these relations, it is readily seen that equatons
(22) and (23) check with the momentum and energy equations
of viscous flow (ref. 10). In the present notation the dissipa-
tion function is simply
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Uy bu,

Em; bu,
&= 2“ bﬂ?j bx,

H oz, Oz, 24)

which is always positive and unaffected in form by the fact
that the coefficient of viscosity p is & variable.

The third-order correction to the molecular-velocity-dis-
tribution function, as given by Burnett (ref. 2 or 11), yields
the second-order corrections to the stress tensor and the

beat-flux vector for both spherical and Maxwell molecules. .

These corrections are accurate to terms of order (u/p)%:. In

Cartesian tensor notation they are (refs. 1, 3, and 7)3
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2 du, oT
GO =0 3, o
ba T[3 b:c,( bx, + bxt b:]-l-
u? T duy
( ax‘," 7 o5 ot +T' oz, (26)

The K’s and ¢'s are pure constants. Their correct values
are given below (refs. 7 and 9):

Maxwell molecules Rigid elastic spherical molecules

du, Ou 4(7_Tdu\) _t(1_Tde )
Ty ’—‘Klp k'_‘l‘ K= 3\2 udT K 3\2 udl x1.014
K;=2 K,=2%1.014
[ % ouy —9 Q’u_‘ Z)uk]_l_ ’ =X
aI{ p bCC a’-Di ax; b:l?g a:v, 3=3 L K3=3X0806
0 27 X 81 (28)
» T _# op oT = =08 (
-K’ pT bﬂ?g bx,—l—K‘ ppT N $j+ Td Td
K=—3=% K=3 = "£.%0.806—0.990
: STIT, 4 * O0; Oy wdl’ ud
K pT? Oz, 0%, H&s p Ox; Ox; 25) K,=8 J K,=80.928 J
Maxwell molecules Rigid elastic spherical molecules
. 1577 T dp 1507 T d[.t h
(2 5 dT b=7 \g—% a7 ) <1 0%
02-——? 03=
04———‘3 04=3X0.806
(35+T dp 6,—3 (35><0 918+T o, 306)—
) 0.150 J

Tt is noted that the values of 8, and 6; for Maxwellian mole-
cules given above are different from those given by Chapman
(vef. 2, pp. 267 to 270). These corrections together with the
values of 8 for rigid elastic spherical molecules are due to
Wang Chang and Uhlenbeck (ref. 9). For ordinary gases
(T/w)(du/dT) has & value lying between 1/2 and 1. It
follows from the corrected expression for 6; given above
that all the coefficients K; and 6, are less than 117/4 instead
of 45/4 as given by Chapman and Cowling (ref. 2, p. 270).

3 The lnst term within the brackets in equation (25) differs from the one given in the refer-
ences quoted. The correct form for the Burnett terms has been glven in reference 8. This
error was pointed out to the authors by Prof. 8. A. 8chaaf and confirmed by Prof. C. A.

“Truesdell and Mrs. O. 8. Wang Chang.

With the expressions for the stress tensor and the heat-
flux vector accurate to the second order, the momentum and
energy equations, equations (8) and (7), become

Du
P Dt‘ pr-l-gf 25, ( )+ba: r®=0  (31)
DE bui Quy bu'{ aql
P o2 S St (VT S 0
(32)

where 74% and ¢.® are given by equations (25) and (26),
respectively. Equations (31) and (32) are the momeuntum
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and energy equations for slip flow and they reduce to the

Navier-Stokes equations and the corresponding energy

equation upon neglecting terms containing ,;* and ¢,®.

. From equations (19), (20), (25), and (26) it is seen that
the ratio of a typical term of 74® to 7, or ¢;® to ,¢, has the

same order of magnitude as either pU/pL or wU/NpTL,

where U and L are the characteristic velocity and length of

the flow, respectively. Making use of the relations
R y—1
Z=Y—- 33
I (83)
and ’
@=yRT (34)

where R is the gas constant, ¢,, the specific heat at constant
pressure, v, the ratio of the specific heats, and @, the adiabatic
speed of sound, together with the definitions tbat the Rey-
nolds number Re=pUL/x, Mach number M=U]/a, and the
Prandtl number Pr=c,u/\, it follows that

)\":—TU_I_J:(y—l)PrM/Re (35
From equation (34) and the perfect-gas law
p=RpT . (36)
it also follows that
;—ZLI=7M'-’/Re @7
From the kinetic theory of gases (ref. 4, pp. 50 and 147)
Plp=a}y=nC [8 (38)
and
#=0.499p¢l (39)

where ¢ is the mean molecular speed and ! is the mean free
path of the gas. From equations (38) and (39)

LG,

(40)
.- 13
0,998 ap 1.25643ujap
Hence the Knudsen number is
n—l/L 1.256~'2M[Re (41)
Substituting equation (41) into equations (37) and (35),
2U_ 0,796y M En ‘ (42)
pL
£U 4706 ( ) PrMEn (43)
WTL

3680556—66——29
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For ordinary gases the Prandtl number is approximately
unity and %§7§ -g5 therefore pU/pL and p*U/A\pTL have the

same order of magnitude as M Kn. Since the rarefaction of
the gas increases with the Knudsen number, it is evident that
for the high-speed flow of a rarefied gas the second-order
terms 74® and ¢;® of the stresses and the heat flux become
relatively important. For y=1.400 and Pr=0.750, it fol-
lows from equations (41), (42), and (43) that Kn=1.486M/
Re, uU[pL=0.940M Kn, and *UNpTL=0.201M Kn.
According to Burnett’s expression for the molecular-
velocity-distribution function, r,®, the third-order correc-
tions to the stress tensor, will contain terms of the form
(#/p)*(Qu/Ox;)3, the ratio of which to ;74 has the same order

of magnitude as
ou
1%(&) “(;_g) ~ MK 44)

Similar terms apply for ¢;*/;g;, Hence the slip-flow equa-
tions, equations (31) and (32), cease to be valid if, for a
given Mach number, the gas is so rarefied that AM*Kn? is not
negligible compared with unity.

The particular problem to be considered in this investiga-
tion is the slip flow between concentric cylinders. This
problem has recently been solved by Schamberg (vef. 3, ch.
VII) for the case of constant coefficients of viscosity and
thermel conductivity. The present investigation extends
Schamberg’s solution to include the effect of variable
coefficients of viscosity and thermal conductivity.

Assume that the rarefied gas is confined between two con-
centric cylinders. The inner cylinder, having radius ¢ and
the uniform temperature T, is rotating at constant angular
velocity w.,, its surface velocity being denoted by U=awy,;
whereas the outer cylinder, having radius b and the uniform
temperature T, is held fixed in space. The flow field is
conveniently described by the cylindrical polar coordinates

r, ¢, and 2, with the z-axis as the axis of the cylinders.
Assuming that the flow is two-dimensional and steady and
that the external force can be neglected,

0 0

) b—z : bt_o Fi— (45)

u,=0

It follows from the symmetry of the problem that

0

where u, and u, are the velocity components in the z- and
r-directions, respectively.

The appropriate equations of motion are obtained by ex-
pressing the continuity, momentum and euergy equations,
equations (1), (31), and (32), in plane polar coordinates.
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This is easily done by making use of the formulas in general
orthogonsl coordinates (refs. 12 and 13). In view of equa-
tions (45) and (46) it is found that the equation of continuity
is automatically satisfied. The momentum equations in the
tangential and radial directions are, respectively (see
appendix B),

1<dr1'r¢+ Ted | (47)-
2
ks jrrn%(m—w)}o “9)

The energy equation becomes
d g d
a;gr+3;+r,¢<7—?—% =0 (49)

In the above equations 7, is the viscous shearing stress, 7,
and 7gy are the normal stresses in the radial and tangential
directions, respectively, and ¢ is the radial component of the
heat-flux vector.

The explicit expressions for the required components of
the viscous stress tensor and the heat-flux vector are ob-
tained by transforming the general expressions, equations
(25) and (26), respectively, into plane polar coordinates and
making the reductions required by equations (45) and (46).
This is done in appendix B. The results are given as follows:

TR =} %-—% (50)
B[l 2 AU\, (25 Lo\ Usduy
=y [(12K° 3K’>(dr)+ 352 G‘K")? dr

155 (G B H(mE55) () 4~Kfp}§i"fzf'+
L e 2T 2 R (Y LcnldT]

ne=t (B3 ) (G) +(GE ‘K°) 1? (3?

L 2\ (%Y _Llg, LdpdT 1 I: <1dp
(‘1—2-& 3K’><r> 3 pTdr dr dr

2dp &¢T 1
7 dr. 3K’Rdﬁ 3K‘T(dr T3 'KarT (52)
g=— SNC)

The expressions for r,, and 743 given in equations (51) and
(52) are slightly different from those used by Schamberg
(ref. 3, pp. 152-153). This is due to the correction of the
last term in the brackets of equation (25) for the Burnett
terms in the stress temsor. Substituting equations (50),
(51), (52), and (53) into equations (47), (48), and (49) and
using equation (27) for the values of the K’s for Maxwell
molecules give

REPORT 1176—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

(for pr?£0) (54)

Fl s ()]
SoPEE @

é.z:ﬁ_ui’__ﬁ[ 1dp\, 2 dp du¢ (
dr r rp pdr rpE‘ +2

3R(fzz_§ lg”ﬁ:r( T)’] & {[ 3dr<}7((ii€>+

3rpdr l: <— +3 ( rdr+

267 (5 Zﬂ} (56)

T du
where ,3—-— T
(54),. (55), and (56), which together with the perfect-gas
law, equation (36), are used to find the four dependent
variables us, T, p, and p as functions of r.

Thus one has three equations, equations

BOUNDARY CONDITIONS

‘It is seen from the previous section that the introduction
of the higher order approximations to the stresses and the
heat flux results in an increase in the order of the momentum
and the energy equations of the fluid mean motion. Ior
instance, the first-order approximations to the stresses iry,
equation (19), lead to the conventional Navier-Stokes
equations, equations (22), of viscous flow, which are partial
differential equations of the second order; while the second-
order approximations to the stresses lead to the third-order
partial differential equations, equations (31), with the
expression for v, given by equation (25). Since the relative
importance of the higher order terms of the stresses and the
heat flux increases with the rarefaction of the gas, this leads
one to the expectation that the number of boundary condi-
tions required for the complete evaluation of g slip-flow
problem should likewise depend on the degree of the rare-
faction of the gas. However,.it was shown by Schamberg
(ref. 3) on both physical and mathematical grounds that the
number of physical boundary conditions required for a slip-
flow problem is effectively the same as that for the corre-
sponding flow in the realm of gas dynamics.

In slip flow, as in gas dynamics, the condition of zero
relative normal velocity at the boundary still holds, but the
relative tangential velocity at the boundary is no longer
zero and the gas temperature differs from the wall tempera-~
ture. These are known as the “slip velocity’’ and the ‘““tem-
perature jump,” respectively.

The expressions for the slip velocity and the temperature
jump at low Mach number were investigated by Maxwell,
Milliken, Smoluchowski, Knudsen, and others (refs. 1 and
4). If z and 2 are the distances tangentml and normal to the
wall, respectively, u and u, are, respectively, the velocity of
the gas and of the wall in the z-direction, and I" and T, are,
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respectively, the temperature of the gas and of the wall,
one has from the kinetic theory of gases (ref. 4) the slip
velocity

and the temperature jump

Do To=098(37) G ) (5 (o ).F 09

where ¢ is Maxwell’s reflection coefficient, ¢,, the specific heat
at constant volume, «, the accommodation coefﬁclent and [,
the mean free path.

For slip flow at high Mach number the above expressions
give no longer a true description of the physical relations
and higher order approximations to the slip velocity and the
temperature jump must be used. A general method for
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the calculation of approximate expressions for the slip
velocity and the temperature jump, to an arbitrary degree
of approximation, is given by Schamberg (ref. 3). The
method applies the laws of conservation of mass, momentum,
and energy to the infinitesimal layer of gas adjacent to the
solid surface, referred to as the “sublayer,” and uses the
nonuniform molecular-velocity-distribution function.

The first approximations for the slip velocity and the
temperature jump thus obtained by the use of the first
approximation to the velocity distribution for a monatomic
gas of Maxwell molecules agree with the results given by
previous investigators for low-speed slip flows.

The second approximations to the slip velocity and the
temperature jump, which are required in conjunction with
the second approximations to the viscous stresses and the
heat flux for high-speed slip flow, are given as follows (ref. 3):
The slip velocity

G LA MO M RN (IS

8 RT?p au, bw) W OT 3

15 5 dz\0z 1 SR BT ) s sl
3, 1 DT /o w1 DTow
s BN\ 57 —3aBD) 157 5,

( >+bRDTbT QR DpdT 4R DT 0 5<au,+ )Q_w
8 Dt 3 Dt

T Di 2z,

where =1 and 2, and the temperature jump

T(e0,)em—To—p | (BT LI (Y [er(3e+ 2y -5

3% Divs, 755 Dt o,

o R )

() o)

(59)

ouy; , ow ou.
T oo (oo ) +aTRT) - (Se+-2o )+

eaT(RT)1/2(2 STt b:c>+ ¢ (RT)V2 bT(bu,_l_g;D te (RT)”’*(bT@ +6 I(RT)WTDP (bu,+

2 “‘(RT)W = (buj“Laz telkT 5 5 b:c b:c 32,00, T OF 3z, 3z, TR <%I>

0T 1 RT OT ou
LRI Ea}f(p) { (

BTy 2 (bT) esBryn 2L dT D

where j=1 and 2.

In equation (60) but not in equation (59) the summation
convention over two indices is used. This notation has the
meaning:
=T, =Y
} 61)
Uy =U, U =0

8o that

dh au bw\_bh(bu wa),bh(bv,bw) ©)
¥z oz;) 0z \dz Ty \2z

2 Dt LogeeT A +3 i =3 1y T Dr 7 oz Dt

oT oT 1 BT oT 0p

p 5—’0; aﬁ?.f

BT op 2T
%" o, Oy

1 DT D 1DT oT
+3 i O (1°g‘ >+"°(RT)1 T ves

1D*T 1 DIT'Dw 18 bTDw}

(60)

The time derivative D/D¢, when expressed in the above
notation, is

D 9 Po)
 Di=or % 5, (63)

All of the derivatives in equations (59) and (60) are to be
evaluated at a point (2, v, 2) as 2—0. These boundary
conditions are applicable provided that the pressure level
and the motion of the gas are such that the second approxi-
mations to the stress tensor ;7y; and the heat-flux vector
a2q; are applicable. This means that the relation M2EKn*<1
holds.
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The values of a,, the b’s, ¢;, and the ¢’s in equations (59)
and (60) are given as follows (ref. 3):*

N\V2/2—¢
=(3) (59

b1=_5.167
b;=0.8749

°‘__<2> (2 =)

HE)E)
e1=—[0.31655+-’§(2: 0) _2(2:U>(2;a>]
() BEHE)]

-3 29 - o9
)]
-#(3) ()

%:1_07
56
e;=—7.9888
eg=—5.4912
e=—1.7183

159 V29—
w6) )
o
In geueral ¢’ is used instead of ¢;. According to the kinetic
theory for monatomic gases (ref. 2) v=5/3, A pe,=5/2, and
¢’ reduces to ¢;. The values of o for air vary from 0.79 to
1.00 while « for air lies between 0.88 and 0.97 (ref. 1).

To obtain the boundary conditions for the concentric-
cylinder flow, it is first necessary to express the general
boundary conditions, as given by equations (59) and (60)
in the Cartesian coordinate system, in terms of the polar
coordinate system. Following Schamberg (ref. 3) closely,
let z and y be the Cartesian axes associated with the polar
coordinates r and ¢ and the auxiliary coordinate systems
24, 2, and T, 2, by the equations

r=a+}z,=r cos ¢
e ) .
y=2z,~7 §in ¢
x=b—2zy=r cos ¢
, } (66)
Yy=—2z,==r 8N ¢

The velocity components u,, w, and us, w, of the auxiliary
coordinate systems are related to the tangential velocity us as
shown by figure 1 and equations (67) and (68):

4 Bchamberg’s values for these constanis have not been changed to agree with the corrected

values of the K’s and §'s glven by equations (27) and (29) becauss the correctlons are negligible
to the order of approximation used later on.
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Ug==1g COS ¢
| o
Wy=—Uy sin ¢
Up=—Uy CO8 ¢

b " } (68)
Wp=Ug sin ¢

The partial derivatives with. respect to the auxiliary coor-
dinates are expressed in terms of the partial derivatives with
respect to 7 and ¢ by means of equations (69) and (70), which
are easily obtained from equations (65) and (66), respectively:

o _ 0 10
b—%—mn ¢ a—r+cos ¢ - b—¢
0 0 0
. 1
aza—cos b br —sin ¢;%
o . 0 10
5?,,__8111 ¢ T ¢ ;5—4:
(70)

0
——bzb——cosqs +sm qb = a¢

All of the first- and second-order partial derivatives appear-
ing in equations (59) and (60) for the boundary conditions
can now be transformed into polar coordinates by means of
equations (67) to (70). After all of the differentiations with
respect to ¢ have been performed, ¢ is put equal to zero in
the resultant expressions, in accordence with figure 1. Be-
cause of the condition of axial symmetry, equation (46), the
partial derivatives of uy, T, p, and p with respect to ¢ all
vanish. -

Figure 1.—Coordinate systems.

The boundary-condition derivatives for both the convex
(r=a) and the concave (r=>5) cylindrical surfaces are given
in the following table. The transformations for the deriva-
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tive D/Dt are obtained from equations (63), (45), and (46),
using the fact that the velocity of the wall %, has the value
U at r=a and zero at r=5, respectively.

Equivalent radial derivative at—
Cartesian derivative
Convex surface Concave surface
(r=a) (r="0)
oT
2z 0 0
oT ar _dr
oz dr dr
T 1dT 14T
ot - T dr ¥ dr
ity a7 &7
B2t dr dr
T
oz oz 0 0
ou
oz 0 0
Qu duy duy
oz dr dr
o () — ()
ox? dr\ r dr\ r
Qu _Puy
oz dr dnt
Oy
oz oz 0 0
ow s s
oz r T
ow
Y 0 0
o
oz 0 0
dw
0z
+5 —a(5) #%)
oz Oz dr\r dr\ r
o Uy —Us
du, du 4(1s) 4 (1)
oz dz dr\r dr\r
2(2u,2v) 4(1)] o)
0z\0z Oz dr\ r 5(7)
Q /0u , ow
2a\oz | oz 0
DT
Dt 0
DT (2)(&
Do 0
DyoT udr
Dt\ oz T dr 0
D/o
Di\ 2z 0 0
D /ou , dw
Di\az oz 0 0
Du _Un
Dt r 0

With these substitutions one obtains from equations (59)
and (60) the following four boundary conditions:

(1) At r=aq,
w)e=U+a@T e 2 (%) +2x,

(2) At r=0,
wh=0—a GTyE[ - 2(Y) | +2x, a2

(8) At r=aq,
R T (73)

(4) At r=5,

Ty=Tur—es T2 ar b+§-§zb (74)
The subscripts @ and b denote the evaluation of a particular

quantity at r=a and r=>b, respectively. The quantities
Xy X, Zg, and Zy, are defined by the following equations:

~—srr{Y+% (“"’)]} —s10R(5) [+4(%)] -
o dTu¢> Ldp, 4 ()]

dr r

s d(“")] —RU(r ROl

(75)

' x=—{Er g dr<u¢>]} —saor(g) [ 5(3)] -

(G ~fer[3 %5 (9)]+
15R[dT 4 (‘5’)] (76)
e AL ().

1 72 (G ) o (3 ) 12 (). +

ZIG4 )
Aol w3l s () Lra i) ¢

(G )12 (5 ), ~1e 72 ).} 8)

The values of the numerical constants a,, ¢,, €, €5, and ¢; are
given by equations (64).

SOLUTION OF CONCENTRIC-CYLINDER FLOW

From the preceding sections it is seen that the problem of
slip flow between concentric cylinders is reduced to that of
solving the three differential equations, equations (54), (55),
and (56), and satisfying the four boundary conditions given
by equations (71) to (74). For this purpose it is desirable
to introduce dimensionless constants and variables as follows:
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k=alb (79) | ~where
Uz Y h=b—a (82)
Moi=3pT,, ,
and ¢, , pue, and Ay, are the properties of the gas based
Re _pUk \ updn the wall temperature T',,. Making use of the perfect-
wa - (80)
Hea’ gas law, equation (86), and of equations (79) to (82),
P oy equations (54), (55), (56), and (36) become, respectively,
1 o= wa
- r*=rfa *=p/Pa A*=NDua dr* l_-_(r Vot g dr* ( ‘-):l_ (83)
w*=u,/U =p/pa c*=0c[cp 8L
e d 4T d [u*
T*<T|Tse  w*=plpes  Pr¥=Pr|Pru. g (7N G ) D Pras ”“’(’*)3“*[%7 <F>T=° (84)
d log, p* 1 dp*
T dr*  p*dr*
,u* 2 1 k 2 *\2 du*
=M e e {riﬂ(p?“)’ [‘273‘[“’ @)t
u* eI gL dT* 38 (dT*\?
M 33) 3 G 3 =gt (e
dlog, p > T*dlog, p ":I
2 & (T e )2 g }
(1_k)2,YM 32 {(F#)Z 'll/* 2
By (T, Reo &+ [ 3 M r*) +
4 &T* 14T+, 28 (dT*
§"M"°2( +2 @9 AT dr*)
d log, 2 T* d log,
sar (T U ) R R I (85)
* *—_ %k
P Ta =p T+ (86) E_]].Ogcl k 10g.7'* m=10g. l/k (89)
VELOCITY AND TEMPERATURE DISTRIBUTION an d 08 / m
Integration of equation (83) gives Edt
dr* e ="IJ; - (90)
u*=dr*—2Br f Yoo 67 | where
1 1dg
where A and 2B are constants of integration. For u=Con- 7 J; P (1)
stant, x*=1 and equation (87) yields
B Equations (89) to (91) and (79) insure that
*_ *
ur=dr = (872) f=¢=0atr*=1lorr =a
which is Schamberg’s solution. : t=¢=1 at r*=1/k or r=b
From equations (84) and (87)
In terms of £ equation (88) becomes
e g (e S 0D Pradt =0 89) 1/ e
(VD - 1) PrMimBit=0 - (92)
It is convenient to transform the independent variable r* )
into £ or {. The latter are defined, respectively, as while in terms of the independent variable ¢ it is
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d (N> dT'
de \* dg

+4(’Y 1) ProoMamB2 (B a0 —0

a@)= [ (E-1) dr=t—s 93)

Equation (93) together with equations (90) and (91) gives
A(0)=A(1)=0. In general A({)<1.

Integrating once

""%T—*_ o—0—1) - Y Pr M, 2miB? f (E)FHa0ds
and again

T*=D4m0 % ae—20 ) pro g, e [ £ arx

[ @y gy (99

For constant p and \, p*=\*=1, y=1, {=¢, and equation
(94) reduces to

T*=D+Clog, r*— (y—1) Pry.

which is Schamberg’s solution.
In terms of ¢, equation (87) becomes

M, 2B (r*) 2

w* 2Bmf (k2)r+A<r) d;— (95)
Now let

tepo=1+3 S pmare (96)
This series converges for all finite values of mA(¢). Making

use of equation (96), equation (95) gives
wt= A+ ) (o7)
where )
=23 2 (e iara (09

Similarly, from equatlons (96) and (94), assuming Prfc,=
Constant,

=D+mC+I>~ ﬂz ! PreMuB [—F%+g()] (99
where

o) =2m [1(©)dr (100)

Now at r=a, {=0, v*=0w,* and T*=1T,*, and, at r=b,

t=1, w*=wy* and T*=T,*. Therefore, from equations (97)
and (99)
w*=w,* — (0 *—wp*) ']i%gr———ﬁ'ﬁgg (101)
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where
FE)=f()—f(0) (102)
and ’
T*=T,*— (T ,*—T,*) ¢+
(v—1) PrueMus’ (w0.* —w,*)®
R IR 6]
(103)
where
G()=e()—£(0)—[g(1))—2(O)]¢ (104)

It is noted that F(0)=G(0)=G(1)=0.

Equations (101) and (103) represent the exact solutions
of differential equations (83) and (84). Since the latter did
not contain any Burnett terms, it was relatively simple to
carry out the integration. However, A(}) depends on a
knowledge of % and p* which are functions of 7* and so
any numerical solution will reduce to an iteration process
of approximating A({) and hence F(¢) and @(¢). This is
also the method of determining the pressure distribution p*
from equation (85). Before proceeding to p*, it is advan-
tageous to rewrite the boundary conditions of the section
“Boundary Conditions” in & similar dimensionless form since
the constants w,*, w,*, T,* and T,* in equations (101) and
(103) are precisely these boundary values. The actual
algebraic reduction is carried out in appendix C, leading to
the following results:

* * ~
wg*=1—1.592q, 2 (T *){f,‘; i }c’ km Kn,+ X, Knz?
(105)
_ (wa*—wp*) (T%)'2 k2(1 —k) ! &
wp¥=1.592a, T i T—E—F(D); ‘Bn,+ kX, Kn2
(106}
1—k
T =1— 079601—(T—*)—7§{T Tb +
('Y_ 1) Prwa ‘Z‘d-tm:l2 (wa*'_‘wb*)g llei;azzl;,(g]SO) }Kn,-]—Z,K'n.’
(107)
- /
Ty* =Ty *+0.796¢, (l—m’%gf—r{n*—ﬂur
(y—1)Proe M2 (wa*—w,,*)al_[’f _‘,ff‘_’szlﬁ, () }Kn.-{-ZbKn,’
i1 (108)
where
Kny=1Kny, (109)

and &,, Xb, Z,, and Zb are the complicated expressions given
in equation (C12). Actually, since X.. . Zp are multi-
plied by Kn,® above, it is only necessary to use the zero-
order approximation to these expressions given by equations
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(C32), (C33), and (C34). The reason for this, of course, is
that the differential equations and the boundary conditions
have been derived only to terms in the square of the Knudsen
number. Thus, it is probably clearer to write equations (105)
to (108) in the form (egs. (C27) )

wa*=ewe* (1 -+ 10 K+ 30, * K1)
p*=qwp*+10p*Enyt205* B’

To*=T*QA+ 1 T*En,+ T *En)

To*= T *(1+: Ty *Kn,+:T,*Kn?)

which explicitly indicates an expansion in powers of Kn,
The coefficients yw.*, swp*, »T.*, and ,T,* (h=0, 1, 2) are
written out in equations (C29) to (C31) of appendix C.
The subscript written in front of a symbol thus denotes the
order of the approximation in the expansion.

PRESSURE DISTRIBUTION
From equation (85), neglecting the terms containing
Mo \?
(72

approximation to p*is

w3

, the zero-order

(110)

o L [ ) dr*:l
y4 eXPI:'YMm . T .

™T*

The superscript in front of a symbol denotes the order of
the approximation to the solution of a differential equation.

From equations (89) and (90)

dr*
T___ﬂ #:tdg—
Therefore
pr—exp | 2 [ (111
In terms of {, equation (115) becomes
_ 0.6336(1—k)2{f on* 2v ( dw"‘
0‘1!’— 12 0 o(p*)z Mwa o7 0
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or

% —exp l:'rme _ ¥ w?)? dsh:l (112)

o TH(R0)FHa®
Since equation (85) does not explicitly contain terms of order
Kn, the zero- and the first-order approximation for p* can
be obtained from equation (110), (111), or (112). From
equations (112) and (C29)

dlog.p> M. 2m u*
17

0

(d log. p* —0 (113)
0 dg‘ l_

From equations (85), (C5), and (110), log, 2
W EKng2 or

— (14 opEnuexp [7’”7 M2

p*=log, *p*+

Fp*(w*)ide

o Ty | (114

with exp ((WEnws) =1+ Kn,l, where

__0.6336(1-—1::)2 ™ o(u¥®)?dr*
b= = f % o(p7)?

u* du >T* 3 dT*
T (St G s [ |- (G )+
38 dT*)’ _0.6336(1—k)* f‘dL* d
OT*O dr* } kz 1 op*zf_‘

o(,u*)’{ <u"' du* < u*  du*
(op* 37 wa’ r* dr"‘) r*+dr +
Zo 7 ()i (59 })

dir® | r* \dr* OT*O dr*

is obtained from the second-order terms of equation (85)
upon substitution of the zero-order approximation therein.

1‘*

{2'yM 2

(115)

4m

T )y ey (B2 g ey (L] ars

o (FLd 12y do? dw*__ on PR ar
ot () (S0 we)regerne (Go)-swwrne (Go)|af o

0 op*d"o}) am

Integrating by parts, using equations (C33) and (C34), and neglecting A(¢), equation (116) becomes

0.6336  /on
BQ+k)32\m

=

.6 f °(”:;, (Wi—ani—an, o ) e &)

,,),(3N1 6N, —8N; 2L H) k’f:[:— ﬁ ] .,,ﬁ{d% Lﬁ]}(le—eN,w—st o, k#) B dgd-

(117)
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where
Ni=(1—Tu*) (1—F)* 4 (y—1) Pre,
'g' 'YkzMwazm

My (1—F)—

Ni=Maim| (r—1) Pro—3 7] - (118)

NFE o (y— l)Prm:I M.im

NFE;:- - (y— 1)Prm] Moim

7

As the first approximation put ou*=,7 and assume

(Z? OE A0+A1H+A2k4r (119)
with
_ 1—o(@") 2
Ao——l-l-(?k’—l)(—li?'ﬁ—
A =—2k91?1°(p£:)), - . (120)
1—o(@®)*
A= J

Equations (119) and (120) insure that ¢p*=1 at =0 and
that ¢p*=op,* and dyp*/d¢=0 at {=1. Then from equation

(117)
o) =] (B Aot 40d,) -+
(A2A4+Alm)(1—k%+A2m<1—m] (121)
where

LN

Ag=(r—1) Pro 2 E o OB

§"yk’ﬂl.,.,’

10
A= v —8(r—1)Prec | Mo - (122)
Ag=| 242 (1) Pre | Mo
Ar=] 37— (r—1) Pros | M )

Then for =1

368550—66——30
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[1—0@%),][—% (3-+-26K2— 17k +
";lPr,,,,(3-|-2k2—-47k‘) ; "’—lPrua(l_w(z'Fk?):l}-p

0.6336(1—k)*(2+1) *
o =Lt |

(1)

(123)

The integral in equation (114) remains to be evaluated.
It is necessary to assume some relation between u* and T*
which, to avoid too much complexity, will be assumed to be
the simple relation p*=T™# where 8 is a constant whose
value lies between 0.5 and 1.0 (ref. 4, p. 150). Furthermore,
in many cases 8$~0.9 (ref. 14) so the assumption =1 or
u*=T"* will be made in order to simplify the evaluation of
this integral as well as to enable a more direct expansion of
all distributions later on.

Equation (114), with the aid of equations (101) and (96),
then gives for g=1

p*=[1-+od(0)Kn,]] exp mﬁzf—ﬁa)lz { (wa*—

4m(“’a*_wb*)[kgwa*'l'F(l)wa*—wb*]r‘l"
Fog* +F(Dwg*— o PEX—1)+J ()}

o)1=k —

(124)

where

T(6) =m0, [ FQdE— (o — ) s+
T
F@)or*—ar*) | FSFQ&-+2m o — )X

[Tmrera+ 2 8 [ (r—at—

[Fo*+ F(1) o — w5+ (0¥ — ) ESF () BIAD]dE
(125)

Upon neglecting all terms containing A({), the first approxi-
mation to J(¢) is

J(@)=

while, neglecting terms containing the second and higher
powers of A(), the second approximation becomes

(=0 (126)

)= o0+ T2 00—

2(0x*— o) (00"~ ) EHFQ) (127



where

Ty =2F(p)-+4m f "R dg
. (128)
T
Ty =akn [ ks 2@y

Equations (124) for the pressure distribution, (101) for '

the velocity distribution, and (103) for the temperature
distribution in terms of the independent variable ¢ represent
the solution to the problem, valid to terms in the square of
the Knudsen number, provided the assumptions of constant
specific heat, of constant Prandtl number and coefficient of
viscosity, as well as of heat conductivity, proportional to
the first power of the absolute temperature, are valid.

The solution (eq. (124)) for the pressure is more simple
than Schamberg’s solution in the sense that the present
assumption p*=T* eliminates the explicit dependence of
the integral in equation (114) upon T*. Figure 2 shows the
dependence of (¥(1) upon k as given by equation (123) for
the values of the physical parameters selected for air in the
section ““Case of Air”’ and discussed there.

120

80

ovil) 60

40

N

0 -

K

=205 2 4 6 8 Xo)

k

Fiaurs 2.—Burnett terms correction to pressure ratio p;* against
diameter ratio k for various values of Mach number My.. Pr=0.715;
4=1400; B=1; Tur*=1; «=0.900; o=1.
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The explicit determination of the expansions of the coeffi-
cient % and of the variables £ A({), F(¢), G(¢), and so forth
in powers of Knudsen number is carried out in appendix D.

FRICTION COEFFICIENT, SLIP VELOCITY, HEAT TRANSFER,
TEMPERATURE JUMP, AND PRESSURE RATIO

FRICTION COEFFICIENT

It is convenient to define the friction coefficient O, as

T
0f= s

7 (129)
2
3 U

The expression for 7, is obtained from equation (50) which,
upon uging equations (81), becomes

e () e ()
From equations (89) and (90)
d _14d
ru* ar* mdy
Therefore
’ —_ I-':Ud_“’_*_,
Tro— am d_{' (131)
where .
Be=TNlixa (132)

Substituting equation (131) into equation (129) and using
equations (79), (80), and (81),

2(1—k) duw*

R6¢0;= ~__km— 7?' (133)

where
nRe;=Rey, (134:)

From equations (C21), (C27), and (C29) the value at the wall
of the inner cylinder becomes

41+ (wa*—10%) En4- wo*—e0,*) Kn,’]

I —FOA—P] (136)

RG.C’ fa=—

Similarly, at the wall of the outer cylinder

4k[1+ (l"-’a lwb*)Knc"l' (Zwa
Be.Op= 1T E—[FQ)A—P]

Since there must be equal torque on both the inner and the
outer cylinders, Cpn/Cr,=k, as shown by equations (135)
and (136). If

Of-——' 00,'(1 + 1 GfKn‘ + 201Kn‘2)

—30p*) K17 (136)

(137)
then
4

Re, °0f“_k{1+k—[oF(1)/(1—k)]} 158)
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4k
ReaCn= A= LF () A—R)]

SLIP VELOCITY

From equations (101), (81), (C28), and (C29), the slip
velocity at the inner wall is

w,— U
U
Similarly, at the outer wall it is

(139)

= *Kn,+ . *Knlt= 0w, *Kn, 0., *Kn,?  (140)

=1y Bingt sty * K= (oo * /) Knt- Gon* ) K (141)
where jw,*, 1wp*, 20.*, and ,0,* are given by equations (C30)
and (C31).

HEAT TRANSFER

It is of interest to calculate the heat transfer between the
rarefied gas and the cylinders. If the dimensionless heat
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transfer ¢* is defined by

_ M
=T (142)
where
Ae=1Aua (143)
then from equations (53) and (81),
_(A=k)x* dT*
e (144)
For Pr/c,=Constant, A*=pu*; go, using equations (89) and
(90), )
1—Fk dT*
= Tmr* d% (145)

From equation (145) and using equations (C22), (C27), and
(C29), the dimensionless heat transfer at the inner cylinder is

1—k—2 0
1t =2 L Tt (T T T B G — T T Bt (1) Prd T2 B D) (142 ot o) it
(10" 100 B2 o0y K] (146)
Similarly, that at the outer cylinder is
*= = L{l —Top*+0To*—Ton* T *) Enet+ To*—Ton ¥ 1o *) Kn'+ (’Y_I)PrM & [lk-:;"?;kz}n'(l—)]?’(l) [1+2(ws*— 10 Kn,+
(wa* —lwb*)’an—l-ZGw;*—gwb*)Kn.’]} (147)
If The expressions for ;T,.*, {1%*, :1.*, and ;T* are given by
q*=oq*(1+.¢*Bn,+2:0*Kn?) (148) | equations (C30) and (C31).
then PRESSURE RATIO ,
N k {1 Ty ¥+ (y—1) Pr 1—k’—2m—oG’(0)} The ratio of the hydrostatic pressure at the wall of the
oda" =T wb Y welq [1—B— )P inner -cylinder to that at the outer cylinder is obtained from
(149) | equation (114), upon using equations (121) and (81), as
1—Fk ' B—2Em—& (1) follows:
— 1—IB—2km—,@' (1
oGt = {I—wa*+(7—l)PrwaM ? — } M m (Pu*(w*)?dt
m [I—F—F(D)] A B [1+-Rnof(1)] exp 2o (LS 159)

*  TEMPERATURE JUMP

From equation (C27), using equations (C29) and (81),
the temperature jump at the inner cylinder is

Ta_'Twa

T _'_—1.11c1’.I Knc+2Ta* Knﬁ

(151)

Similarly, the temperature jump at the outer cylinder is

Tb’—wa

T . —1Tb*.K7L,+2Tb*K'n,2 (152)

For the case u=T, equations (124) and (81) give equation
(158) the form

'YMwa2
= F—F(D)

2(1—F—2m)F(1)+ (;~*—1)F*(1)] (0s*)*+

[—2(1=E)+2(F+E)m~+ (A —k2H+-2m) F(1)] 20, *wp * -

(&2 —F—4m) (0®)*+J (1) } (154)
In general] J(1) is a small number and can be replaced by

21';—”= [14En g (1)] exp 7 ([ —F—thim)+
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2J(1), which is given by equation (D41).
(154) and (C29)

(p)—“l’zonu o oF(l)]"[(l—H_M)_I_
2(1—I—2m) oF (1) + (k=" —1) oFA(1) -+ 3T (1)]

For the case of equal wall temperature, T,,*=1 and, from
equations (D23) and (C29), (F(1)=0. Therefore

From equations

(155)

(%)—expzo T k,)g [(1—F—4k2m)+3T()]  (156)

Or in terms of ¢

(B
0 6Gon

1,38, 1,.1
(1-!—— e—l—-iaez-l-—ea-l-?—g‘-i— .
(v—1)PrM.,’ e 143 ,

1208 (1+ chgget - )]

From equations (C28) and (154), using equations (81),
(C29), and (C27) and neglecting the first-order corrections
to of'(1) and J(1), it follows that

T~ 'YMwax S Y . 7
Pe on[l—k’—oF(l)]’{[(l ket —4detm)+ 21—k —2m) oF(D)+

-

(1564)

(k2= 1) o ()] lwa*—ém*)+[—2(1—k’)J}2(1+k*)m~

(k2 —1—2m)F ()] yeop* J(l)} 157)

For the case of equal wall temperature #(1)=0 and
M 2
U "%1’7‘)‘*‘

o= g Utk (e
2[—1+k2+<1+k2>m]lwb*—gm*wn} - (158)

1Pb*:M[<1+l G'l'i € 'l% e"-l—l e+ .. ) <1wa*—-1ém*)+
C e fetterdar . Yot
8601,7*(7_1)13 Mg (—l—— +:12§g€,+ B ):I (1580)

The use of effective values g, and A, and hence of an
effective Reynolds number Re,, similar to the effective
Knudsen number Kn, defined by equation (109), is & natural
consequence of the form of the expressions for the skin-
friction coefficient, the velocity of slip, the heat transfer, and
the temperature jump. The use of these effective values
gives expressions closest in form to those of Schamberg and
agrees with his when the functions F and G’ are zero. Since
7 as determined in appendix D will, for equal wall tempera-
tures, increase with the Mach number 3, and “curvature”
1/k as shown in figure 3, so also will g, and A,.

The limiting values of all expressions when k=1 or «—0
agree exactly with the plane Couetie flow solution of refer-
ence 7.

REPORT 1175—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

2.0
1
07 N
\Y
\\ \
1.8 N
\ \(‘,n \

: \\ \
[\Ne)
©
=4
o
L 4
© 4 ™~
\ &‘
12
T2 |
.\\ |
. 0
105 2 7 5 B )

A

Ficure 3.—Variations of iy and 3y with diameter ratio % for various
values of Mach number Myq Pr=0.716; a=1.400; =1; Twt*=1.

CASE OF AIR

Assuming that the gas is air and that the cylinders aro
made of metal such as aluminum or brass, the required
physical constants are given as follows:

For the ratio of the specific heats take

y=1.400 (159)
& value which is reasonably accurate and has the advantage
of computational simplicity. It also agrees with the value
given by the kinetic theory for & diatomic gas whose mole-
cules have five degrees of freedom.

The kinetic theory gives, for the Prandtl number,
Pr=4v[(9y—5)=0.737 at 0° C for a diatomic gas with
v¥=1.400 (ref. 4, p. 182). For air, various values have been
used in the study of the laminar boundary layer in com-
pressible flow by different investigators. The value Pr=
0.725 was used by Crocco and Conforto (refs. 15 and 16)
in 1941; Pr=0.733, by Brainerd and Emmons (refs. 17 and
18) in 1942; Pr=0.750, by Schamberg (vef. 3) in 1947; and
Pr=0.715, by Cope and Hartree (ref. 14) in 1948. The
value Pr=1 was also used by several writers (refs. 19 to 21)
for mathematical simplicity. In the calculations to follow
the value used will be

Pr=0.715 (160)
as suggested by Cope and Hartree in 1948, based on the
latest data for air given by Kaye and Laby (ref 22), 1941,

Maxwell’s reflection coefficient ¢ is given for air on

machined brass by R. A. Millikan (see ref. 4, p. 299) as
¢=1.00 (161)

The accommodation coefficient « has, according to M.

Wiedmann (see ref. 1, p. 658), the average value of

a=0.900 (162)
for air on metal. This value is also used by Schemberg
(ref. 3).

‘With these physical constants, equations (64) give the
following constants for slip flow:
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a;=1.253
c'=2.498
e=0.251 »
. ee=1.911
€e=—5.491 |

(163)

It is noted that, since air is not a monatomic gas ¢ 18 used
instead of ¢,

For the case that u=~T,
- B=1

Upon using equations (C29), (159), and (160), equation
(D16) gives

(164)

1 0.143 /14+82 1
=g (14 Tt +225 1ik, m) Ma: (168)
For the case of equal wall temperatures,
wb*=1
} (168)
oF(1)=0

Similarly, using equations (C29), (159), (160), (164) to (166),
and (D28), equation (D9) gives

a1 Mt 0.02045 [1—8E+F*
071=a" I (1—k’)2 2(1__],:2)2

The variations of both {7 and %y for various values of the
ratio & of the radii of the cylinders at various Mach numbers
and equal wall temperatures with the ratio of the specific
heats y=1.400, Prandt]l number Pr=0.715, and the viscosity
index =1 are given in figure 3.

It is seen that, for £>>0.40 and M<(4, 1y and 25 have
practically the same value, and therefore equation (165)
can be used for calculating $7 instead of equation (167).

At smaller values of % and higher Mach number #n<3s;
that is, the correction tends to decrease the value of 7.

From equation (156), upon using equations (D41), (159),
(160), (164), and (166),

9+E) |, 3
4(1—F)m " m3

(167)

2
log, §p» —M 0. 702,;), (1 —k—4km)—

M, 0.2002 28m  1— .
e 3 HHEEEE ] s

The variations of {p,* with the ratio £ at various Mach
numbers and at equal wall temperatures with y==1.400,
Pr=0.715, and B=1 are given in figure 4. It is seen tha.t
the pressure ratio jp,* increases rapidly with the curvature
1/k, especially at high Mach numbers.

Upon using equations (C30), (166), and (163), equation
(140) gives

1.995
FA+h

Similarly, equation (141) gives

W =— (169)
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_1.995k
P ARt

The variations of yu,* and ;u,* with the ratio k are given
in figures 5 and 6, respectively. It is noted that u,* is
independent of the Mach number M,,, while ;u,* depends
on M,, through ,p,*. As %k decreases or the curvature
increases, it is seen that u,* becomes more negative or the
slip velocity at the inner cylinder increases in magnitude
while the slip velocity at the outer cylinder decreases.

Equations (C29), (166), (159), (160), (163), (D31), and
(C30) give

(170)

0.569 [/ 2 \
lTa*=m - m M.+
0.163 1+ k2 :IMW (171)
k(1+E)(1—F) L4(1— k’)mT(l —EB? 2mt|
and
7+ 0569 < M,,,,
! b 1+IC m 1 pr

0.163 14748 , M.t
AFR0—F) | i0—Pm 1= k*)* 2m2]1 & 172

The variations of ,7,* and , T’,* with the ratio % for various
Mach numbers and equal wall tamperatures with v=1.400,
Pr=0.175, and =1 are given in figures 7 and 8, respectively.
It is seen that as k decreases , T,* becomes much more impor-
tant than ;T3*, the latter going to zero with % for all values
of M.

\\
loge o‘ﬁg‘ \\ \N
N
N
\
N\

]

\

{a) \
0 2 4 6 8 LO

k
(a) log,3ps* against k. Dashed curves neglect M terms.

Fiaure 4.—Variations of zero-order pressure ratio with diameter
ratio ¥ for various values of Mach number. Pr=0.715; y=1.400;

B=1; Tup*=1.
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FigurE 5.—First-order slip velocity at inner cylinder against diameter Ficure 7.—Fimst-order temperature jump at inner cylinder against
ratio k. Pr=0.715; y=1.400; B=1; Tper*=1; o=1. diameter ratio k. Pr=0.715; v=1.400; f=1; Tus*=1; a=0.900.

.
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Fraure 8.—First-order temperature jump at outer cylinder against
diameter ratio k. Pr=0.715; y=1.400; g=1; Twy*=1; «=0.900.
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Froure 9.—First-order correction to parameter 5 against diameter
ratio k for various values of Mach number M,, Pr=0.715;
v=1.400; 8=1; Twp*=1; «=0.900; o=1.
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Figure 10.—First-order correction to pressure ratio 1p,* against di-
ameter ratio k. Pr=0.715; v=1.400; 8=1; Twp¥*=1; «=0.900;

o=1,

In figure 8 the anomalous behavior of the curves for small
and large values of & is due to the large exponential values
of ¢pp* for increasing Mach number at all values of k except
in the neighborhood of k=1. In fact, for k=1, T*=
0.2845M,,,% independent of ,p,*. This is seen upon expand-
ing equation (172) in powers of e=1—£%* and letting ¢—0.

From equation (D10), the variations of ;9* with the ratio
k for various Mach numbers and equal wall temperatures
are found and plotted in figure 9. Since *>0, it follows
from equations (C28) that 5 increases with the Knudsen
number. .

Making use of equations (D41), (159), (160), and (166),
equation (158) gives :

p— _4k27n 2
1—# ﬂf:;“ Ciwa*—*)+ -

lpb*=0-700

(1—k%?
— 2
2.800 1+’(‘;4_'§:;)sz)"‘ I‘o{:" o+
1 1 2 m  1—k| Mg
0.2002 ey [5 (1+k2)+1_kg el m*
(173)

The variations of ;p,* with the ratio %k for various Mach
numbers are given in figure 10. Since ;p,*<C0, it follows
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that the pressure ratio p,* decreases as the rarefaction of
the gas, that is, the Knudsen number, increases.

From equations (135) to (139) and (146) to (150), the
variations of Re,Cy, and Re.Cr, 105 and Cp, of.*, and
of»* with the ratio k are found and plotted in. figures 11, 12,
13, and 14, respectively.

The zero-order values of both the skin friction and the
heat transfer are observed to increase in absolute magnitude
at the inner and decrease at the outer cylinder with increasing
curvature.

Upon using equations (159), (160), a.nd (166), equation
(123) yields

F(1)= ﬁﬁ)z {A— )+ [1—o(ps*)~(—0.136— 1.660k*+

0.169%*+0.060(1—42) (2-+k%)/m]}  (174)

The variations of (1) with the ratio % for various Mach_

_ numbers and equal wall temperatures are given in figure 2.

It is seen that 0$(1)>0, for sufficiently small %, and it in-
creases rapidly as k decreases. It follows that the effect of
the Burnett terms in the differential equation tends to
increase the pressure ratio py*.

The coefficient of the last term in equation (123) is plotted
against k in figure 15. For the case of equal wall temper-
ature, this term becomes zero. -

14

o

R8s oCrg and R8, olp
-2}

4 \
Ry oCro

L— | Res olp

0 2 4 6 8 1.0

Figure 11.—Zero-order friction coefficient at inner and outer cylinders
against diameter ratio k. Pr=0.715; y=1.400; 8=1; Tu.;*=1;
«=0.900; o==1. .
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Ficure 12.—First-order correction to friction coefficient for both inner
and outer cylinders for various values of diameter ratio k. Pr=0.715;
v=1.400; g=1; Tus*=1; «=0.900; o=1.
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F1aURE 18.—Zero-order heat transfer at inner cylinder against diam-
eter ratio k. Pr=0.715; y=1400; B=1; T.,*=1; «=0.900;

r=1.
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F1ourE 14,—Zero-order heat transfer at outer cylinder against diam-

eter ratio k. Pr=0715 y=1.400; g=1;

o=1,

To*=1; a=0.900}

Consider in more detail the special case

and

From figure 3
From figure 4
From figure 5
hence

From figure 6
hence

From figure 7
From figure 8
From figure 9
From figure 10
From figure 11

From figure 12
and

From figure 13
From figure 14
From figure 2

k=0.5
M,.=2.0
m=1.17
De*=2.77
WU *=—2.67
10, ¥=—2.67
Wy *¥=0.24
10*=0.12
1T*=3.73
1 Tp*¥=0.42
m*=0.96
1Ds*=—6.30
0CrRe,=5.32
oCnle,~1.33
10p=
10p=—2.79

—2.79

ofs*=—1.86
ofs*=0.59
W(1)=4.56

5

(175)

(176)

- (177)

J
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Freure 15.—Variation of function 0.6336(1—k)*(2+}k%)/2k2 log,% with

diameter ratio k.

From equations ((33), (C34), and (113)

(&) =—185
o@i; =—045
‘z—}";) =2.19
d{,) =0.55

0(F =130
‘%‘) =—0.81
( g7 ), =—3.90

( )——O 98

d]ogi> _
()

Equation (C32) gives then

oXs=5.46
oXp=—0.16
oZ.=10.0
Zy=—0.14

-

- (178)

(179)



456
and equation (C31) gives
gwa*= 17.8
*=—0.08
2% (180)
o T *=—27.0
gTb*=O.38

From equations (D9) to (D11), using equations (177) and

(180),

7=1.17(1+40.96Kn,—5.0Kn2) (181)

l Neglecting the rarefaction correction to !y and F(1), equa-
tions (135) and (136) give the friction coefficients

Re,C’,a=5.32(1—2.79Kn.—|—17.9Kn,’)}

182
Re,Cr,=1.33(1—2.79Kn,+17.9Kn,") (182)
Similarly, equations (140) and (141) give the slip velocities

“"E U_ o 67Kn, 417 8Kn?

u (183)
T}=O.24Kn,—0.16Kn.’

Equations (146) and (147) give the dimensionless heat
transfer

¢.*=1.86(1410.5Kn,—83.7Kn,%)
} (184)

¢»*=0.59(1—1.3Kn,+8.2Kn.%)
Equations (151) and (152) give the temperature jumps

I"—;&=3.73Kn,—27.0Kn," )
7T (185) -
%’?=0.42I§n¢-l—0.381{11,3
©0wd

.30

1.26

1.22 ——

7 /

.18

114 .

l'K}O .02 .04 .06 .08 10 12

Kng
FiguRe 16.—Parameter » against effective Knudsen number. Pr=

0.715; v=1.400; 8=1; Twr*=1; «a=0.900; 0=1; k=0.5; My.=2.
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Equations (C28) and (154) give the pressﬂre ratio

1%’:2.77(1—6.3Kn.+ cL) (186)
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Ficure 17.—Friction coefficient against effective Knudsen number.
Pr=0.715; v=1.400; p=1; Tep*=1; «=0.900; o=1; k=0.5;
M,.=2. i’

.02

/
17

0
-02
-04 \

¥\

-06
—_08 \\
-10
125 02 04 26 08 10 12

Fiaure 18—Slip velocity against effective Knudsen number. Pr=
0.715; v=1.400; p=1; Twos*=1; «=0.900; o=1; k=0.5; My,=2.



HIGH-SPEED SLIP FLOW BETWEEN CONCENTRIC CYLINDERS

— %

-1.2

////// =~
-1.6 >~

0 02 04 06 08 10 12
Koy

Froure 19.—Heat transfer against effective Knudsen number. Pr=
0.716; v=1.400; =1; Tws*=1; «=0.900; o=1; k=0.5; Mo.=2.
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Fraune 20.—Temperature jump against effective Knudsen number.
Pr=0.716; v=1.400; g=1; Tu*¥=1; «=0.900; o=1; k=0.5;
My.=2.

The variations of 5, Re,Cy and Re,Cp, (u,—U)/U and
/U, g.* and ¢*, and (To— T)[Twe and (Tp— Tp)/ T's» With
the effective Knudsen number Kn, for Pr=0.715, v=1.400,
=1, Tpy*=1, a=0.900, s=1, k=0.5, and M,,=2 are given
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in figures 16, 17, 18, 19, and 20, respectively. Similar re-
sults could be calculated and plotted for any other choice of
the parameters, but the enormous amount of work required
to do 8o for any range of parameters does not appear to be
justified at present. This is especially true in that no experi-
mentel data exist for a check. :

The effort of the Burnett (second-order) terms or the Kn,
terms in equations (181) to (185) is seen to counteract the
effect-of the first-order slip terms or the terms in Kn, in all
cases except the femperature jump at the outer wall. The
latter would show the same behavior if 15 and F(1) were not
neglected.

SUMMARY OF RESULTS

A study was made to determine the effects of variable
viscosity and thermal conductivity on the high-speed slip
flow between concentric cylinders. The results are sum-
marized as follows::

1. Satisfactory estimates of the effect of variable viscosity

"and thermal conductivity upon the velocity and temperature

distributions were obtained from Schamberg’s solution for
constant values of these coefficients by basing the friction
coeflicient and the coefficient of heat transfer on the effective
coefficients py=1uy, a0d A,=nAy,. These effective values
of the coefficients u, and A,, in the case of equal wall tem-
peratures, increased with the Mach number M and the
“curvature’”’ 1/k.

2. Only the expression for the pressure ratio p,/p, was
significantly different in this case from Schamberg’s solution
with constant u because of the use of effective values of
Reynolds number and Knudsen number.

3. The effect of the Burnett terms in the differential
equation was more pronounced upon the pressure ratio
Du/pe.  This effect increased with the effective Knudsen
number Kn,, the Mach number A4, the temperature
difference (Twa— Tws)/Txa, and the curvature 1/k; it was

measured by the factor o of equation (123) as used in
equation (124) and plotted in figures 2 and 15. The effect
of the Burnett terms could best be seen by an experimental
determination of the pressure ratio ps/p,.

4. The effect of the Burnett terms both in the differential
equation and in the boundary conditions tended in all cases
considered to counteract the first-order effect of slip velocity
and temperature jump on the boundary.

5. For equal wall temperatures the effect of the Burnett
terms was to increase the pressure ratio and to increase the
skin friction on and the heat transfer to both cylinders.

6. The curvature effect on the behavior of the friction
coefficient, the slip velocity, and the temperature jump as
k decreased was such that they all increased at the inner
cylinder and decreased at the outer cylinder. When £
approaches unity, the values of all quantities reduce to
those for plane Couette flow.

UNIVERSITY OF W ASHINGTON,
SeaTrLe, Wasu., December 20, 1961.
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APPENDIX A
SYMBOLS ]
A constant of integration, equation (87) K, K,, ... K; numerical constants of stress tensor,
Ay, 4, . . . Ay numerical constants, equations (120) equations (27) and (28)
and (122) Kn Knudsen number, /L, equation (41)
A 102p Kn, effective Knudsen number, equation (109)
=L P oxt k=a/b
Ay tensor L characteristic length of flow
4, nondivergent symmetrical tensor associ- | I . mean free path of gas, equation (39)
«  ated with 4y, equation (21) M Mach number, Ula, equation (35)
adiabatic speed of sound, equation (34) .1 . b .
a { determinant of metric tensor, appendix B m=log, z=log. » equation (89)
radius of inner cylinder Ny, Ng, Ny, N, numerical constants, equations (118)
a; numerical constant in boundary condi- | Py component of stress tensor, equation (2)
tions, equations (64) pr - Prandt]l number, ¢,u/\, equation (35)
Qy fundamental metric tensor, appendix B P static pressure of gas, equation (5)
B constant of integration, equation (87) Q ~ heat received per unit mass of gas,
b radius of outer cylinder ’ equation (8)
by, by pumerical constants in boundary condi- | g¢: component of heat-flux vector, equation
tions, equations (64) (3)
c constant of integration, equation (94) 1 rth-order approximation to ¢,
¢Co, :C1 constants of integration, equation (D25) | ¢™ nth-order correction to g, equation (14)
C, friction coefficient, equation (129) R gas constant
¢ mean molecular speed, equation (38) Re Reynolds number, equations (385) and
¢y, ¢ numerical constants in boundary condi- . (80)
tions, equations (64) T radial distance from center of concentric
Cp specific heat at constant pressure : cylinders
Co specific heat at constant volume N entropy per unit mass of gas, equation
D constant of integration, equation (94) 9
D/Dt convective time derivative of hydro- | T absolute temperature of gas, equation (9)
dynamics, equation (4) T. absolute temperature of wall
Dy covariant derivative operator, appendixB | ¢ time, equation (1)
E internal energy per unit mass of gas, | U surface velocity of inner cylinder, awy,
equation (3) U, v, W components of macroscopic velocity in
€1, €3, - - - €10 numerical constants in boundary condi- z-, Y-, and z-direction, respectively
tions, equations (64) o component of macroscopic velocity, equa-
€y symmetric rate of deformation tensor, tion (1)
appendix B X, Z functions, equations (75) to (78)
F function, equation (102) z,, 2 Cartesian coordinates of physical space
F, component .of external force per unit | % * component of Cartesian coordinate of
mass, equation (2) physical space .
f function, equation (98) - : accommodation coefficient, equation (568)
@ function, equation (104) 8 viscosity index, %%; equa.tiz)n (56)
¢ function, equation (100) R Christoffel symbol of second kind, ap-
enthalpy per unit mass of gas, equation pendix B
(9) . vy ratio of specific heats of gas, ¢,/c,
h gap b.etween cylinders, b—a A function, equation (93)
I function, equation (D27) 8y unit tensor, equation (5)
J function, equation (125) e=1—1I2, equation (D18)
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I variable, equation (90) Werg angular velocity of inner cylinder
] constant, equation (91) w* : dimensionless angular velocity, equation
0 divergence of velocity, appendix B (95)
01,05 . .. b numerical constants in heat-flux vector, | @ numerical constant, equation (C5)
equations (29) and (30) Subsecripts: :
A coefficient of thermal conductivity, equa- | 0, 1, 2, in front of any symbol, order of approx-
tion (20) imation to boundary conditions, equa-
M coefficient of viscosity, equation (19) tions (C27) and (C28)
£ variable, equation (89) &, B,1,7,k, I, m covariant vector and tensor indices,
P density of gas, equation (1) appendix B
v Maxwell’s reflection coefficient, equation | e effective value
(57) wa conditions at wall temperature T,
T shearing stress | indicates covariant differentiation, ap-
iy component of stress tensor, equation (5) pendix B
a1 rth-order approximation to = Superscripts: )
Ty™ nth-order correction to gryy;, equation (13) | &1, 2, - . . in front of any symbol, order of approx-
$ dissipation function, equation (24) ' u:lmz.lt(i):)ln Zoq :(t;)ilglntlc()flo)()f differential
- . . . . equ , equ
¢ anizi&ers coordinate in cylindrical coordi- @, B8,%,7, k1, m contravariant vector and tensor indices,
. . appendix B
°f function, equation (115) B exponent in viscosity-temperature
oy function, o/on?, equation (121) relation
APPENDIX B

TRANSFORMATION OF EQUATIONS OF MOTION TO POLAR COORDINATES

The equations of fluid mechanics have been written in
Cartesian tensor form in this report as in references 1 and 3.
Howaever, the problem considered had to be set up in cylin-
drical coordinates and Cartesian coordinates were abandoned
in the process. In order to take into account all possible
systems of curvilinear coordinates, it is best to express the
equations of fluid mechanics, including the Burnett terms,
in general tensor form for any space with a metric form of the
type (ref. 23)

ds*=aqa,da'da’

By the principle of covariance all that one has to do is to
express each term in the equations as the proper invariant
(scalar, vector, or tensor), which reduces to the known form
when the coordinates are Cartesian. The method and nota-
tion used are to be found in reference 23. The distinction
between superscripts and subscripts is necessary.

There is no difficulty with the equation of continuity. Itis
almost in the form of a scalar equation already. Redefine
the comoving time derivative

D _?
E—tﬂa—i-l-'ukpk

where D, is now the covariant derivative operator. For any
scalar such as p the covariant derivative is the same as the

ordinary partial derivative. The divergence of the velocity
is the scalar

) 9
0= Dyt ==t T v = 2 (/3 )

In other words, take the covariant derivative of the contra-
variant velocity vector u* and contract the result; a=|ay,|, the
determinant of the metric tensor @y By definition the
covariant derivative is

< auk
u”,;=ﬁ+f‘f, u™

where the terms I}, are the Christoffel symbols of the second
kind. The continuity equation is then

Do, .
n; =0

or ) B1)
gtB‘F(Puk)n=0

for, when covariant differentiation becomes ordinary differ-
entiation, these expressions reduce to the known equation,
equation (1) (ref. 23, p. 196).
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Similarly, the momentum equation is a vector equation
and the energy equation is a scalar equation. All that is
needed to give them general fensor form is to place the
indices properly and to use covariant differentiation. They
are obviously

P‘D—D—?—PFFF%'F&“M:O B2)
DE
pﬁ+p9—|—f°ﬁua|p+g“|a=0 B3)

which replace equations (6) and (7)

Expanmons (13) and (14) remain the same as long as it is
borne in mind that each 7,® is & covariant tensor and
¢:™ is & covariant vector. HEquations (19) and (20) for the
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second-order approximations remsin the same:

b'ug
ry=—2r5
bT
=" Mgp

prowded W is redefined as the covariant tensor

du; 1 1
Wi Edu=§ (utu-l"ujlt) -3 Oayy

One must use @, here as it is the fundamental tensor of the
gpace; @/ is the fundamental contravariant temsor, and
5/ is the fundamental mixed tensor.

By continuing this process the expressions for the third-order Burnett terms become

.,.u(?)—K'l eeu‘l‘Kﬂ I:z (A’U‘I'Am)—'-A |aa’{j_— (W™ gy mt+u™ [jufi]m)"l_ U U @iy — (etm'umu‘l'ej%mlt)'i' My mtty |+

pT[ WT3E axx:( h”w/— ba:" @y +K4 I: @ Ty+p1T) 14)——01""P|lenau]+Ks T2<TliT =3¢ T Timay )+

R | Serenrteren—5etesty
q:"’ = 01_ 9T|t+ '92 T

where the covariant vector Ai——F,——- %P,: Tu—gg; p,,—%
and
0T oT

T“f—bxjaz{ risz:

The Cartesian symbol Ay has been replaced by the covariant
expression

%‘ (Atj_l_Ajl)_— kaij

In order to obtain equations (54) to 56), it is necessary to
introduce plane polar coordinates r=az' and ¢=a*. The
metric form is .

ds*=dr*+1* d¢?

50 ap=g'=1, a,,=r’=a—ln: and all other values of @ are

zero while a=13. The only nonvanishing Christoffel symbols
are :
TL=—r

1
I‘u—l‘a =;-'

Denote the physical components of the velocity vector by

L]

b:c' ) +2ur: Ty |6, —'P|x:8tt+04y"3tt1t+as

7 Lixe's

u, and s, where uw,=u,=u' and u¢=m’=%- Similarly,

the physical components of the vector ¢, are ¢- and ¢y and,
of the stress tensor (vef. 23, pp. 145 to 1486),

Tr=T="1" !
1
L Te=r73

N

Then
10 1 bu¢
0=7 5 (w7 55

oy Uy 10Uy
Tor'r 'r 0¢ (B4)
and the equation of continuity ’t;ecomes
Op
_“‘Far( mh)+r b«;b (pug)=0 (B6)

Written out, equations (B2) and (B3) become equations
(31) and (32) in covariant form, D*=a* D,
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P%‘—PF:"I'PU:‘_Q'D“ (néra) +D* 72,9 =0 B6)
DE aff a 2)af @a
p ’E‘t"+279_2ﬂ3 uﬂla_-D ()‘Tla) +T ua]ﬁ+q la=0 (B7)

The components of % ; become, using covariant derivatives
and the nonvanishing Christoffel symbols,

Du, ?nh b bur U QU U
Dt ot 1Y = bt+ "r T o8 7
Du,

o, 0 o,
—D—t‘=9£2—"|-’ll't U =T T;’-f-uf 5y (The) s a_(;

Lﬂt Fl—Fr, Fg—TF¢, Dlp——

components of ¢;; are

> and D,p—g—i- The covariant

—p (O 1
efn—r<ba1;+uf> 391'2

while the contravariant ones are

n_ou, 1
3

la?la1+lbu¢ Ug
2\2 0 ' or 2*

_ L bu¢ __];l
eZ= < > 3r26

2,
=g

el2—=gll—
Since

ullazgu—r—"u¢
0¢

du,
="z

i (24

it follows that in equation (B7) the dissipation term is

ek”"'=< )+ (r % T + e s +(}.%"§+”§')’—%ez

Consequently, the equations of motion and energy in two-
dimensional polar coordinates are
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Qu, | OUy , Uy OUs bp a
P( +u, == +7b—¢—7—2) pF+ ( 9 ]
LOT, (10, 0 wy) 52 rou
rbqs r d¢ Or rop r
Der ®=0 (BS8)
(%_l_ MéLQj.é aum_%’wr) ¢+___
IAEION M AP
orL"\r 0¢ rb«;b r 3¢
2u/1 o,
2 ?jg Qs t Dery,® (B9)

S
A +<:-zl::+%> 0%

5 2% (h M%LT it

For 6=0 and p=Constant these reduce to the well-known
equations for an incompressible fluid (refs. 12 and 13). It
still remains to find the components of ¢:® and 7:,® and sub~
stitute into these equations. For the former the result is
immediate:

(B10)

2
o B T, @[22 du, OT | 2 duy OT
0P =0 mO 5t g 55 OD T2 55 5T

BIG) B R -]

2r 0¢ \r O0¢

o, 1du, 10wy u, 12
9— e 2o 7 3ar9]+
oi’[bu, aT,1aTlau,au.,u¢>:|
5pT |\ or or '2r d¢p \r 0 ' Or
12T 21 ? 1 du, u
q"’m“al_e __H”pT 379 (9T)+2( )br
20T (1 ouy 1 du, , Qus_ us\0p
rbd;( -l—~):|+93 [: 706 Or r/)or
1bu¢ Uy lbu
3r 2¢ e+<r ¢ + r b¢:|+0‘ r b¢+

aué u¢+ b’ll»r_‘_% %>:|+
lbu,lbu,,, ’ll«¢ aT

7 O¢
4L
ST 2\r Q¢ ' Or brT
lbui,fu,, 12T 1aT9]
\7 ¢ ! T 06 3r 04




462 REPORT 1175—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

A longer, more tedious calculation leads to the stress components

@ [l. 2 bAl 1 AI 1 bAg 2 a’ll:¢ 1 D‘U¢ 1 bu ’u¢ ) .

Tor K‘ o e)+K’ 3or 3r 370 3 r bqb rop T
2 ouy bu¢ lou, uw\,2 (_b_u_,__ ):I I I:_ ou N 1, , _%_ud, ’:l (2 o’T 1 ol
3or\ro¢p r "" © 39 +K"p 3 e+12 ra¢+ +K’ R 327 3ror

1T 42 20p 0T 1 2poT [2 T) T)’:I
375598 )T K o7 (3 55 or 5730 55 ) T Ko T SRR 7 3

Tos __Kll" 9(1 a’wé_l_’ur ‘9)+K2 2 bAz 2A1 1 DAI>+K2P [3 _i_l% 'u¢> <1 ou, 'u¢,

37 0 3 r r 0¢
2 -0po (3 s - D (B S B O
: :g*;w)’]m IR R i 3332%,’;2—5—%%?%, +stva[-3-(;6—¢- —i(5) ]
om0 (3 ) AL (3 ) o (L) B (L)
AN NPT RN RO )
K8 s ig’;'+b“" ’j‘)

Since for the symmetncal case considered in this report %,=0 and all pa.rtml derivatives with respect to ¢ vanish,
9=0,A1=—% %., and A,=0, it follows that these expressions simplify considerably, becoming simply

¢:P=0 TP =75, =0
@ — [J. ’U/.g. dT | 1 [J. dp d’lL¢ ’ZL¢ . . . .
gV =—20, T E—r-+2 rd\dr + Equations (B8), (B9), and B10) reduce for this symmetric
case to
1,4 @2 U % ’“é)
50 pa; T >+0‘ + —p—¢+—£+d7" 4= — (rr P —746®) =0
1 0 ¢ dT(duy Uy
pT dr\dr r [ (d_ui___>:| +2, du¢, u¢ —0
ldp 1 dp duy A\ | o Us QU
@O="= Ug TUe
Trr K’— or dr dr pdr) 2( ) ( )+2r dr + d
dug_e)' 4 L x—>=0
_(du )+ EQ”R( d’T_lﬂ’)_l_ dr rdr dr
p dpdT dT\? But 71 @ = D= Qup U\ o W
K‘ppTdrT+3K5pTR I (B11) =Ty Tr$=Tr$ Blgr — 7 ) Tee=Tee =
— 29T —=0.® i i i
TMQ)_—KQ [d (1 dp) 2 dp+ <du¢.+u¢> s <u¢>’]+ =—X e and g,=¢,® in this case, so these are precisely -
plLar equstions (47) to (49) while equations (B12) and (B11)
il du ¢ Uy 2. (2dT &T agree with equations (51) and (52). No second-order terms
123} +—Kn— T ar /) - | occur in equations (50) and (53) since 74®=0 and ¢*=0.
d dT 1 " The second-order term for ¢,? does not occur because its
K‘PL;Tﬁ o 3K5pTR (7}') (B12) | derivative with respect to ¢ is zero in the problem considered.



Making use of equations (79) to (81), the boundary con-
ditions, equations (71) to (74), can be written in dimension-
less form as follows:

oo G [ ()] 54 G

Xb*Ei

*
* TRT,?
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APPENDIX C
REDUCTION OF BOUNDARY CONDITIONS TO DIMENSIONLESS FORM

(T, %) 3, »¥)? -
S )3 +@b*) AN

Ty*=Tu*—o

where

(P-a )
U =1+ *)m[ (5 )| ST © o= R”zgmi’};,=(1‘?"m s —0.706 (1% ")Kma (C5)
@Pa(TLq €xa

using equation (41).
(02) The functions X,* Xp*, Z,* and Z,* are obtained from
aT* a equations (75) to (78) by use of equations (80) and (81) and
T*=1+¢ % (T *)1/2 = +E;’ *;22 *3 (C3) a,ge (75) (78) by q (80) (81)

X, 3
—RT,,,,U

G T"* {dr*[’*dr*( ‘ﬂ} (5 167 15)( '>[’* (r*'>l (fzf: ‘>f
57 [ aa ()-8 G o) e [ 35 ()]

X,
RT, U
g (Ao A E D
| L5 (5)) |
@*Z, o)

oenr (e G G
(B Y -dm [l G )35

* a Zb
“RT.2

d (u* 1 d fu* 1 dT*
=el'Yth2Tb* [7'* F (%)]:_"_2' 'YMwa’Tb* ['u/* F <%>]D+&3Tb* ;—* F)p—‘—

(e’ 14) (dr* b (‘f;T*;:I | J
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where the prime denotes the derivative with respect to ¢.
Equation (93) gives

a=E— (C15)
‘Therefore
F/(0)=0
} (C16)
F(1)=0
' (0) =4m2(%— 1)
: (C17)

) =4k2m2(£‘-nf—1>
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- Upon using equations (89), (90), (91), and (C5), equations ., 0.796¢,(1—Fk) /dT*
(C1) to (C4) become, respectively, Tr=1+—p ram (g ), Knet ZEnd - (C9)
0.796a,(1—k) /dw* 172
ua*=1+_H(%(—*?‘”‘) >Kn,+XKn. @D | Tyr=p,»-2T00 ,Q(Tb) ar ') EntZoKn? (010)
here
o 0.7960,(1—E) (T,%)'" v Kny=nEa (©11)
Up*=0 T T (Ti? lKn.-I-Xt,Kn," ©8) | .na
5 0.6336(1—K)2(*)2X,*_ 0.6336(L—k)*[ 5 do*dT* 8 . do* d o
K== a7 %3 B (T, [ e o? i (4 634—3 5 T T T* G a (oge 2%
my,, 9 + aT* 5dT * 5
o* o Tgap 6 Lt dg"):lf-o
5 0.6336(1—E) (u,%)2X,*  0.6336(1—k)? do*dT* 8 ., do* d
B T =ttt Lo 1 G (4545 8) G ‘a1 T G a5 008 2
gmyb*w*d_T_
87 d
nod dg L (O
5 0.6336(1—k)2(1%)?Z.* 0.6336(1—k)? { do*\' | (dT™N 1 ., &T*
Zur O i (M0 () o () 12 Tt
mue* 1 dT* | 118 \dT*
(5 ttectioo e (gre) e Gttt (347 0) G I,
5. 0.6336(1—k) (%) Z,*  0.6336(1—k)? . AT 1 BT+
T e =gy T (G ) o (G ) —1g ¥ g+
m#b do* 1 aT*
[2 o Gt (Gta)er G |§ J
" because of equatlons (C6), (89), (90), (91), and (95).
From equations (102) and (98) and from equations (104) and (100)
—2 @) =g )—g(1)+g(0)
FO=FO=2"22"mpuer  ©3) ©)=¢
=2mf($) —g(1)+9(0) (C18)
o . a+1
P (5) =30 2 g ()=t (1) ~2mAG)] - (C14) @ (5) =2y’ (§) (C19)
n=l whence -
G (0)=G"" (1)=0 (C20)

From equation (101), using equations (C16) and (C17),

-

(@)= c"“Icfﬁ%b'a)‘ —2m)
— s (—2k'm)
) o w’f F(l) > (OC21)
d{’) 1 akz F(l) (4m?ug*fn)
Po* w.¥—wy 3
d&" >0=1_kx_‘;;1(1) (4]62777, F‘b*/ﬂ) )

while from equation (103), using equation (C20),
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- LN
)= @19~

('Y— 1) -Prtuctﬂf[un12(":’a,"_"'~’b:.;)2
Q—F—FQ))

[1—E—2m—@ (0)]
d_dZ;:'>1=_ (Ta*—'Tb*) -

d2T . (’Y'— 1) P7‘an:t]‘4‘1-na2 (wa*_wb*)z
&)= —F—F@F ™)
<d2T‘> —_ (’Y'— l)PTwaMwai(wa*—wb*)a(é"k?mz)
a* /i A—-E—-FQ)P J
. (C22)

Putting equations (C21) and (C22) into equations (C7)
to (C10) yields

W *—wy ¥ 1—k

@e* =1~ 16021~ iy g F(l)]Kn,+Xaan (C23)

*__ ¥ *\1/3 p—
wp*=0+1.592a, {2 _,l‘;:; zzb(? »%) i f IS—- ?(I)Kn,+kXDKn,2
(C24)
Ta*=1--0.796c1ﬁa",i)1,2 {Ta*—Tb*—I—
—I2—om—@ ~
('Y—" I)Prwasz(wa*—wb*)gl [F_PZLF(?)](?)}KnO_l_Z@Kng
(C25)
T,,*=T.,,*+0.7960,(1—7_n"1{(7§’;?—m {Ta*—Tb*+
— Bk —
(D) Pl ot —ayp L 2R O ()]
Eng+2,Kn,* (C26)

It is convenient to express w,*, w,*, To*, To*, us*, wp*, 1o,
and 7 in ascending powers of the effective Knudsen number
Kn,. Thus write

wa*=0(’-’q * (1 +1w, *K'n'a"'ﬁwa *K'naz)

wp*=gwp*} 1wb*Kna+Wb*Kno’

(C27)
Ta*=0Ta*(1 +1Ta*-K'nc+2Ta*Knog)
Tb*=oTb*(1 +1Tb*Kna+aTb*Kns2)
Ua ¥ oUq * (1 + 1Ug *K'nc'l'xua *K'n'sz)
Up*=oUp*+ 1 * Ko+ 1u, *Kn 2
‘ (C28)

D*=eps*(1 +lpb*Kna+2pb*Knsg)

= (1 +m *-Knc+27l *-K'nog)

where the subscript 0, 1, or 2 written in front of a symbol
denotes the order of the approximation to the boundary
values,

gWg — _k[l_kg_ (1)] <1wa*_1wb*_% lTa* +Ofa
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Equations (C23) to (C26) give in successive steps the
zero-order approximation:

(C29)

OTa:':=1
oTb*=T mb*
the first-order correction terms:

. 1.592a,(1—F) ' A
e T P —F ()]

o ¥ 1.592a, (1 —E) 2(Tpp*) V2
T T I F— D]

_0.796;17,(L1—k) {1—1:,,,* +

lTa*=
- (C30)

2 1—E—2m—,@(0)
(v—1) PryeM,.; [1—E— P }

«_ 0.796¢,(1—k) _ *
e _me_u*('T_m*)_"’{l Ta*™+
—Icﬂ—zk%n—oa'(l)}
I—F—FQF §J

where oF'(1), ¢G’(0), and (@ (1) are obtained from equations
(102) and (C18) using the zero-order approximation, equation
(C29), to determine n and p*, and the second-order correction
terms -

(’Y_ l)P ruaMwa2 L

-

. 1.592a,(1—k)

« 1.5920,(1 =) (T, ®)1
T T I F)]p,*

% 1Tb*—117b*>+k OXD

Gwa*—lwb*-‘lTa*'l‘

0.796¢,(1—k)

ol ¥ = ey {@ lTa*__; T ¥ T *— watlTb*)_I_
(0P O 2 L (CD)
5170+

2Tb*=”%% {wa*lTa*+%<1—3wa*> To*—

1—kz—:zlc%n;oa'(l)><
[1—F— F)P

~

1
(2 1w *—2 lwb*+§ 1Tb*—1Ta*—1Pb*>} +T :,., )
0

(1 _ T wb*) 1P b*+ (’Y—l)Pera’
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From equations (C12) a.nci (C29), with u*=T7*8,
0. 6336(1 k)? {

~

OXa

()~ (s=30) (50, (%),

35 (o) G (&
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)

& _0.6336(1—F)’ 6336(1—1:)’[ 5,7 o ) < ) ( dT*) 8. . ( * (dlog.p )-.]
SO Tk = L3—gh) Lar h\ar h T @ - (on)
5 =’0.6336(1—1(:)”{ dT (d’T"‘ ( ) T‘) :'}
T Lt d; o 12 (o)t aLa ekt Med) (),
5 __0.6336(1—1:)’[ (di 2 dT*\* 1 PT* lc’mp,,b ( dT*):]
OZb‘_“ kzmgo@b*)g GI'YMwagwa* 0 dg' 1+k2380 dg_ 1_‘14’5’ wb* ) + 06+14) wa J
Also equations (C21) and (C22) give, upon using equations (C29),
)=y
ar /o 1—B—JFQ)
( 1— k’ —oF(1)
- (C33)
d’w*) 4m?
o\ dt* Jo 1—E—F(L)]on
d’w*) AP oy *
Nt /i [1—E—F(1)]m )
ars\ _ . (= DProM’ . e o )
(T )= 0T~ R U —2m = O
aT* _ . =D ProaMod (. 32 opa,
\F I—-——(l T‘””*)_[l—k*—oF(l)]’ [1—EB—2km—.G (1)]
K Y r (Ca4)
— v—1) Pro.M,
(o)~ S o
T (v—1)Pr..\,
(o) =ty @) J
APPENDIX D
DETERMINATION OF APPROXIMATE EXPRESSIONS FOR DISTRIBUTIONS
From equations (90) and (91) (93) yields
1
1 = | T*&d D4
7= L pdy (D1) 7 fo § (D4)
1 ff
4 == | T4, 5
g== | wrdr D2) =5), 17 (Ds)
t
The kinetic theory of gases (ref. 4) gives A(§)=fo (?*‘1> dt (D6)
that is pocT? D3) It is customary to assume 8 constant and for most gases its
) LT value is quite close to unity. While the calculations can be
carried out for any constant value of B8, it is much simpler
Experiment shows that for most gases the value of B lies | to take =1 as is done in the text from equation (124) on.
between 0.5 and 1, and it varies slightly with temperature. Substituting equation (103) into equation (D5) and taking
Substituting equation (D3) into equations (D1), (D2), and | B=1,
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o= { Tty T Ty el ledlod ol

[-—ja—me—3Ev 0]} @
where I(H)= j: aq (g‘)d{.

Substituting equation (103) into equation (D4), with
B=1, gives

=g (T T+ (r—1) Preo Mo gm0 [ (10—

LEvw]| o9

Upon neglecting the rarefaction correction to F(1) and I(1)
and using equations (C27), (C28), and (C29), this yields as
successive approximations to »

S frele T a2 |

(D9)

011—2 (1+wa*)+

(y—1)Pr M1
— ) R

12;m+J(1>] D10)

0717 -—"'(1T *+ Tb*)+2(1wa

o it GTe*+aTo) +[oe — ¥+

(y—1)Pr M,
s R 50—

Now A(0)=A(1)=0 and, for 0<¢<1, |[A({)|<1. As a first
approximation assume (superscripts denote order of approxi-
mation to solutions of the differential equations regardless
of the boundary conditions)

A(5)='A()=0 D12)
It follows from equations (98), (100), (102), and (104) that
¥ () =" @)="F()='d()=0 (D13)

Substituting these into equations (101), (103), (D7), and
(D8) gives

2 Guog*— EE (1)] (D11)

. O —wp*

lw*=w¢ - 1—2 (l—k’r) (D14)
IT*=T""—, (Ta*_TD*)g’—{ (V—I)Pr”?f‘{:;;g‘:a*—wb*)a [1___

(1—k)s—k%] (D15)

1 —1) Pr M (w.*—w,*)3 1—
1.,7,=§ (Ta*+Tb*)+(7 ) g(l_.k(:;ﬂ ) <1—|—k’—--7k-,)

(D16)
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g (Tt o)+ (=D Pr Mad(ost—oy (14 e

19 9
& St et) @)

where
e=1—[32 (D18)

and

VA AR T

<7—1>Prgff;§;ga*—wb*)’[;—§(1—19):*—

Sl
(D19)

For the second approximation, equation (D6) gives

o[ (E2)a

which, upon using equations (D15) and (D16), yields for
=1

’A(r)=§;7{ (T*—Ty) 1 —8)+

('Y_ l)PTI(‘;[fSIE:’)a*_wb*)z [g- (1 _g-) -

1—¢-k%— }
1—Fm
(D20)

where 'y is given by equation (D16). It is noted -that
A (0)=2A(1)=0.
Neglecting the second and higher powers of A(f), equa.tlon

(98) yields
@) =4m? | % 2AG) df

which, upon using equation (D20), gives .

)= =T L a—mygmit |+

(7_1)PruaMm2(wa — Wy ) 1+k2—
et | —mea—n+5H5E S |+
Constent (D21)

It follows from equation (102) that
Q) ={ (Tt =T 51 —m) 4 —1%) + 1 —m)sh

m;’kzr]Jr OO Pl (o —en’) 2[—m$‘(1 —§)k%—

(1—E%) (B2 —k%)
e |} D22)
and
F)=g- (T4 —T) (1+k*—7k') D23)

’F<1>=i% (T *—Ty%) (1+§ I ) D24)
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where e=1—%? as before.
Substituting equation (D21) into equation (100) yields
for Prfec,=Constant

2 (£) =2m f F()dx

B o [ e—mghmet |

(y—1) PrM 2 (w,* —co,,*)f[l—k’-l—zk’m N
1—Fk 20—Fm '

(—m)itmit =g ||+ Ok Ot (D29)

From equations (D25) and (104)

0= (@1 { -2
(1) A= — @—m)tr—msr| +
('y—l)PrM 2(wa —wﬁ)’[( 1—12 1—|—k"'>g_+

(st o) A= —(1—m)ghr—

1— k8
=5 (D26)

The integrals I(¢) defined in equation (D7) for £ and I (1)
m equation (D8) for  can now be found from equation

mks—
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(D26). They are
16— [ *6wa
T ()i

H(-Z)omedn

am (37m) 0~

(Y—1DPrMpH(w*—wp*)® 1—4/3
T (l—) { =" 2m] =+
<1+k’ 1—F gk (= 3k’ 2 (1

l—k‘ } D27)

11 ,
(5"75[) L +§f e +16(1—Ic’)m
1= [ aw

—s f@a—1m[ 50— —a4 2GRS0,

(=DM Aot —otf | Tt 8",;)2 Ly

9(i+k») . 3 }
16(1—&Hm 4m?®

D28}

0= —por | @—TA+et - )+

(= DPrMuor =0 (0t pag et - ) | @29)

The derivatives @(0) and @ (1) needed in the coefficients 175*, 1T%*, .T.*, and ,T,* in boundary conditions (C27) are

also found from equation (D26) as follows:

@ (=g 6 = { = To%) 141

M—I—(l —m) k%4-2m (1—m) tk% +2m’§“’k’f:|+

—DPrM,2 (0. *—wp,H? [ 1+ 1— kzl—l-lt.‘2 :
o ) - 1— lc5 ) i —om Ti—p ™ 2m2§(1_§)k2r—1ink’kq:|} (D30)
Thus
¢ =L {@r—19 [24-m 2 |t o Pratd o= [t o am )| O
2(;"(0)—24:l I:—(T Ty (1+11 h et .. >+3—0 (y—1) Pr Mud? (0a*—wp*)? (1+g ot .. >:| D32)
and

2G,(1)=%E {(Ta*—Tb*) [1_|_2k2+kzm__3(lz;kz):l_l_(-y—l)PrMuui (wa*—wb*)’ [4(1 k,)—l a—

1+E D33) -
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(D34)

Using equation (D22) for *F({) and equation (D20) for 2A({), the integrals J; and .J, in equations (128) become

i (§) =2F (£) +4m f ip () dp

=—%{(Ta*—Tb*) [20-me+5 (3-5) =19+ @—m) st mpmer | QoDEr M o~

23k21
2m

) = +mes @ —m) s |}
R e

1+E | 2km
20—k " -k

(V—1) PrMo? (g —co®)? ;L:I}(D36)
T =] @r-T(1+d et G o+l et )=

(D P = (g5etgs et .. | @)

J3(1)=IE{(T,,*—T,,*)l(1+k2—1;k—’)+(v—l)Perf(wa*—wa’.")’B—( e |

.- .>+(v—1)PrMm2(w¢*—wb*)’ - (1—[——&—[—

11
T =15 I:(T Tb*)(l—— 6—03 et

From equation (127), when use is made of equations (C29),

and so

6/ (1) =¢J1(1) +oa(1) —25F (1)

-2 — 28
D35)
)=t [ kA s
)

—E{r—ro [ (142 0+ b my -

mEk :I_l_(’r 1) Prid, 2}5:,4 _wb*)z[l e
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(D38?
(D39)

)] (D40)

8 (§) =e1(§) +oJa($) — 2% 3F(5)

=—1l{(1——T,,b*) I:%+2Ic2—%k‘+2m (1_15;)7;7_19)]4_(7 1) PriM, [2 (1-+r4 22 1mk":]}
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